

What is an EFB?

EFB is a system comprising hardware and software that provides:

- Flight Crew access to emerging electronic flight operations data, general purpose computing and communications
- Replacement of many of today's paper documents
- A range of implementations spanning portable electronic devices up to installed certified integrated systems

Why Implement EFB?

Today, virtually all documents are authored electronically, yet distributed with paper. Aircraft operations are documented and supported extensively using paper.

Today

With EFB

Airplane Manuals* - 77 lbs/ 35 kg

* Typical 777 manual set. Does not include maintenance logs.

Goal: Eliminate paper and associated revisions required to operate an airplane

Airline Requirements for EFB?

Based on Airline Inputs

System Requirements

- Open Architecture
- Simple, intuitive operation
- Data accessible all phases of flight
- Range of implementations (portable through installed)
- Replace existing paper products
- Provide rapid updating
- Improved Communications AOC to CPDLC
- Common implementation across Airline fleets
- Minimize training footprint
- Growth and flexibility to expand with Airline needs
- Low Cost

EFB Implementation

Specifying Systems that are:

- Modular and Scaleable Multiple entry levels
- Operate with Windows and Linux
- Provide Connectivity with ACAR's, SATCOM, Connexion etc.
- Integration with existing Avionics and Systems
- ARINC 763 Compatible
- Include Video Surveillance in baseline
- DO-160D and RTCA DO-178B Level C
- Data distribution via secure internet (MyBoeingFleet.com)
- Pilot User Interface Human Factors compatible

Boeing/Jeppesen scaleable EFB solutions provide multiple entry points and migration paths between portable and/or installed options.

Early adopter - 2002

Transition

AND/OR

- Non-Essential Applications Only
- Restricted number of Applications
- Restricted phases of flight

High End Adopter – 2003/4

- Essential & Non-Essential Level Applications
- Unlimited number of Applications
- ALL phases of flight
- •Supports: laptops, Keyboards, printers, CCD

Boeing/Jeppesen scaleable EFB solutions provide multiple entry points and migration paths between portable and/or installed options.

NSS - 2004/5

- Datalink Comms
 - •SATCOM
 - Gatelink
 - •CPDLC
- •NOTAMS
- Weather
- Video Recording
- Data Recording
- Intranet
 - Crew Scheduling
 - •E-Mail
- Security
- Expandable
- Supports Maintenance
 - Fault Reporting

Support addition of ARINC 763 Network Server System

Airborne Communications Capability

- Today, once the airplane is airborne, communications with dispatch or Airplane Ops Center (AOC) is limited (e.g. ACARS/VHF)
- Future CNS/ATM functionality may not be supported
- Passengers often have better access to modern communications than the crew

Goals:

Short term: provide airlines with effective tools to communicate efficiently to flight and cabin crew when airborne, e.g. Company intranet, scheduling, fault reporting, etc.

Long Term: Facilitate CPDLC (Controller / Pilot Datalink Communications)

Surface Ops/Ground Navigation

- Today, some cars have better access to ground navigation than airplanes
- Airplane design has traditionally focused on Airborne Navigation

Goals:

Short Term: Provide Taxi Map Displays for Situational Awareness

Long Term: Incorporate NOTAM updates and route information

Weather Information

Today, flight crews have limited access to real-time weather

Proof of Concept Operational Program

AWIN Trials – Charts, Weather

Provide flight crews access to weather information currently available only on the ground

Facilitates better decision making and potentially reduced fuel burn

Application Manager- overview

- Provides the following system functions:
- Pilot Access
 - Primary Pilot Interface control and top level application navigation management
 - Dedicated one touch bezel function key
 - View Transfer (DU to DU)
- Maintenance Access
 - Software loading interface
 - System Utilities
 - Software configuration control
 - BIT/BITE
 - Maintenance diagnostics

Video Surveillance - overview

Initial deployment*

- Allows pilots to view flight deck door area from seated position
 - Identify person at the door
 - Ensure nobody else within 8ft radius
- Displays located in forward field of view
- Split screen images for multiple camera viewing
- Airline selects number and location of cabin cameras

Future Options*

- Potential to record images during flight for later retrieval
- Datalink images off-board

* Contingent upon additional hardware options

Application & System specification subject to change

Onboard performance tool - overview

- Compute takeoff and landing performance
 - •Calculates limit weights, V speeds, and engine power settings based on user input of airport conditions, and airplane configuration
 - •Calculates assumed temperature thrust reduction for operations below limit weights
 - Accounts for MEL & CDL items and affecting aircraft performance
 - Accepts input of NOTAMS which alter airport definition (e.g. runway shortening, temporary obstacles)
- Facilitate Weight and Balance calculations
 - Verifies CG within limits based on user input of passenger, cargo and fuel load
 - Calculates stabilizer trim settings

Electronic documents - overview

Display PDF, HTML, XML documents

- •allow for integration between manufacturer supplied and airline authored documents
- "smarter" formats (XML) provide best document display control
- Provides links between documents and document navigation using hypertext
- Text search engine
- Typical documents
 - •Flight Crew Operations Manual
 - •Flight Crew Training Manual
 - Minimum Equipment List
 - Airplane Flight Manual
 - •Flight Planning & Performance Manual
 - Airline Policy Manuals
 - •etc.

Electronic logbook - overview

- •Record basic flight information (crew members, flight times, weight and balance, fuel uplift, etc.)
- •Record fault reports using pilot friendly graphical interface (electronic FRM)
- Provide flight crews with airplane status
 - -deferred maintenance items
 - —information on recurring faults (fault history)
- •Record completion of non-routine (fault resolution) and routine maintenance action (servicing, scheduled checks)
- Work management tool for line mechanics
- Record airworthiness release
- •Feed enterprise resource planning (ERP) databases
- Provide compliance with regulatory recordkeeping requirements

Taxi Moving Map - overview

- Improved Situational Awareness
- Own airplane position only
- New dedicated airport databases
- Consistent accuracy over entire airport surface
 - 3-5 meter accuracy maps
- Pilot selectable North-Up or Heading-Up modes
- Individual zoom and Pan functions
- Text remains readable during map rotations
- Each taxi segment individually labeled

Navigation Charts - overview

- Electronic Terminal Area Charts
 - •Content:
 - Jeppesen standard
 - -Jeppesen tailored
 - -Terminal charts (SIDs, STARs, Approach, Airport, noise & airspace)
 - Enhanced interface
 - -Quicker access to charts
 - —Pre-loading from FMS flight plan (where possible)
 - Format
 - -Vector-based
- Airport Familiarization Charts
 - familiarization prior to arrival
 - Individual Pilot selectable views
 - CBT

Data Distribution using Secure Internet

Crew Information Systems Data Distribution

Applications

Taxi Maps
Jeppesen Charts
eLogbook – fault reporting
Performance Tool

E-Documents Etc...

Training

Ramp Hanger Maintenance

My Boeing Fleet

Airline Firewall

Flight Deck Services

Flight Attendent Ops Passenger Service Fault Reporting

How Do We Implement EFB?

Rules and Regulations

- FAA has recently released a EFB Advisory Circular
- AC 120-76 defines EFB's in 3 separate classes
- Certification is divided into:
 - -Parts 23 and 25 Airplane Airworthiness
 - Unique requirements for each class
- Operational Approval
 - -Parts 91, 135 and 121 Operations
 - Same operational approval applies to all classes of EFB
- Human Factors Considerations

How Do We Implement EFB?

Rules and Regulations (continued)

EFB Airplane Certification Criteria

- Structural mountings, environmental, egress, safety
- Non-interference
- Equivalent level of safety must be shown
- Functional hazard assessments required for some applications
 - Data accuracy, integrity, availability
 - Loss of data and Misleading data

How Do We Implement EFB?

Rules and Regulations (continued)

EFB human factors considerations

- Should be considered for all EFB systems
- Part of the TC/SB process for all installed EFB's
- Includes many aspects
 - Human/machine interface
 - Physical components (structural cradle, articulating arms, cabling, connectors, etc.)
 - Responsiveness of application
 - Lighting and readability issues
 - Input mechanisms
 - Managing multiple open documents
 - Critical phases of flight, etc.
- Supporting documents (e.g. Volpe Human Factors guide)

EFB Implementation

* Crew Laptop's updated from server for offboard access

* Optional

External antenna

Terminal wireless transceiver

Computer trays in EE-bay

Cabin wireless access point

Airplane system interfaces
(ACARS, SATCOM, Connexion, FOQA, flight plan information, Weather etc.)

ARINC 763 Network Server System Architecture

Potential EFB Display Locations

The Challenges

- Consistent with Flight Deck Philosophy
- Physical constraints for Retro-fit and Production
- Environmental Qualification considerations
- Crew Interfaces
- Lighting considerations
- Crew Workload
- Distractions and Fatigue

Electronic Flight Bags

Summary

- Eliminate paper
- Open architecture
- Basic and tailored applications to meet airline needs
- "Plug and Play" options for efficiency
- Certification safety, workload and approval
- Integration to avionics and other on board systems
- Flexible, phased implementation to accommodate growth

HAVE A NICE FLIGHT.

REMEMBER TO TURN ON YOUR LAPTOP COMPLITER

DURING TAKEOFF.

I THOUGHT
THEY TELL
YOU TO
TURN IT
OFF.

SCOTTADAMEGADLICON

OFF ?!! HOW ENDOUGH THEY TRAINSFER COMTROL TO YOU IF THEY HA'D TROUBLE?

TURN OFF THAT

NO WAY!
I HAVE
TO LAMD
THIS BABY!
... CAN I
DO THAT IN
"EXCEL"?